492 research outputs found

    The future of the IGF: mandate renewal?

    Get PDF
    This week, internet governance debates will centre on the UN General Assembly, which is due to make a decision about the future of the Internet Governance Forum (IGF); specifically, whether or not to renew its mandate. In advance of that decision, Luca Belli, Researcher at the Center for Technology and Society (CTS) of Fundação Getulio Vargas Law School, Rio de Janeiro, outlines the value of the IGF and why he believes that its mandate should be renewed. This is the second blog to be published by the Media Policy Project which considers the issue of the IGF’s mandate

    Not Neutrality but ‘Open Internet’ à l’Européenne

    Get PDF
    On 27 October, the European Parliament approved a new regulation which will abolish roaming charges across the EU. However, in the same regulation, there was also discussion of the more technical question of net neutrality, a thorny issue which centres on the principle of equal treatment for all web traffic. In this piece, Chris Marsden, Professor of Internet and Media Law at the University of Sussex, and Luca Belli, Researcher at the Center for Technology and Society, explain the important impact of the new Regulation on web users across the EU, and ask what challenges we may face in the future as a result

    Reactivity of platinum(II) triphenylphosphino complexes with nitrogen donor divergent ligands

    Get PDF
    Dinuclear platinum(II) complexes [{PtCl2(PPh3)}2(μ-N–N)], where N–N is a divergent bidentate nitrogen ligand, were prepared by reacting cis-[PtCl2(PPh3)(NCMe)] with N–N in a Pt/N–N molar ratio 2. The (trans,trans)-isomers were obtained as kinetic products and recovered in good yields and high purity {1, N–N = pyrazine (pyrz); 2, N–N = 4,4′-bipyridyl (bipy); 3, N–N = piperazine (pipz); 4, N–N = p-xylylendiamine (xylN2)}. Cis-[PtCl2(PPh3)(NCMe)] was also reacted with the tridentate divergent ligand 2,4,6-tris-(pyrid-4′-yl)1,3,5-triazine (py3TRIA) in molar ratio 3 with formation of the trinuclear (trans,trans,trans)-[{PtCl2(PPh3)}3(μ-py3TRIA)], 5. On the other hand, the treatment of cis-[PtCl2(PPh3)(NCMe)] with the monodentate pyridine (py) produced a mixture of both trans-[PtCl2(PPh3)(py)] (6a) and cis-[PtCl2(PPh3)(py)] (6b). The reactions of cis-[PtCl2(PPh3)(NCMe)] with N–N = pyrz, bipy, pipz, carried out with a Pt/N–N molar ratio 1, were monitored by 31P NMR spectroscopy. Equilibria were observed in solution, involving dinuclear (trans–trans)-[{PtCl2(PPh3)}2(μ-N–N)], mononuclear [PtCl2(PPh3)(N–N)] and free N–N. The addition of an excess of the divergent ligand allowed the complete conversion to the corresponding mononuclear complexes. With the heteroaromatic ligands both geometric isomers were observed (7a, 7b and 8a, 8b, for pyrz and bipy derivatives, respectively) while with pipz the trans-isomer only was detected, 9. In the system involving bipy, the scarcely soluble dinuclear (cis,cis)-[{PtCl2(PPh3)}2(μ-bipy)], 2b, was also obtained. Products 2, 2b, 3·2(CHCl3) and 6a·0.5(C2H4 Cl2) were structurally characterized by single crystal X-ray diffraction methods

    Integration of Wi-Fi mobile nodes in a Web of Things Testbed

    Get PDF
    Abstract The Internet of Things (IoT) is supposed to connect billions of devices to the Internet through IP-based communications. The main goal is to foster a rapid deployment of Web-enabled everyday objects, allowing end users to manage and control smart things in a simple way, by using Web browsers. This paper focuses on the integration of Wi-Fi nodes, hosting HTTP resources, into a Web of Things Testbed (WoTT). The main novelty of the proposed approach is that the WoTT integrates new nodes by using only standard mechanisms, allowing end-users to interact with all Smart Objects without worrying about protocol-specific details

    A convenient synthesis of highly luminescent lanthanide 1D-zigzag coordination chains based only on 4,4′-bipyridine as connector

    Get PDF
    The coordination polymers View the MathML source·C7H8 (Ln = Eu, β-dik = dbm, tta, hfac; Ln = Tb; β-dik = dbm; Hdbm = dibenzoylmethane, Htta = thenoyltrifluoroacetone, Hhfac: hexafluoroacetylacetone) were easily assembled in mild conditions and high yields starting from the anhydrous lanthanide β-diketonates as nodes and 4,4′-bipyridine (bpy) as connector. X-ray single crystal studies have shown zigzag extended chains where lanthanide centres are 8-coordinated in a distorted square-antiprismatic geometry. Photoluminescence studies show bright red europium emission and spectral features dependent on the topology of the polymeric chains

    Synthesis and reactivity of platinum(II) triphenylphosphino complexes with aromatic aldoximes

    Get PDF
    trans-[Pt(μ-Cl)Cl(PPh3)]2 reacted with arylaldoximes in 1,2-dichloroethane to afford [PtCl2(PPh3){N(OH)=CHAr}] (Ar = 3,4-dimethoxyphenyl, 1-naphthyl, 9-anthryl) where aldoxime ligands are N-coordinated to platinum. The obtained complexes are soluble in chlorinated solvents, where they afford equilibrium mixtures of cis,trans and/or (E),(Z) isomers. Equilibria in solution were studied by 31P-NMR spectroscopy and solid state structural data were obtained by single crystal X ray diffraction studies. The reactivity of [PtCl2(PPh3){N(OH)=CHAr}] complexes with basic aqueous solutions was studied, under liquid-liquid phase transfer catalysis conditions. The outcome of the reaction depends on the stereochemistry of the precursors: cis,(Z)-isomers promptly undergo cyclization to the corresponding dinuclear derivatives [Pt{μ-(2-N,O)}- {N(O)=CHAr}Cl(PPh3)]2, where two aldoximate ligands symmetrically bridge two metal centers

    Создатели ядерного щита

    Get PDF
    The first example of a crystallographically established bis-adduct of tridentate 2,2':6',2:6',2"'-quaterpyridine (qtpy) of formula [Fe(qtpy)(2)][ClO4](2) has been obtained by treating an aqueous solution of iron(II) perchlorate with the ligand in the presence of triethylamine

    Toward Industry 4.0 With IoT: Optimizing Business Processes in an Evolving Manufacturing Factory

    Get PDF
    Research advances in the last decades have allowed the introduction of Internet of Things (IoT) concepts in several industrial application scenarios, leading to the so-called Industry 4.0 or Industrial IoT (IIoT). The Industry 4.0 has the ambition to revolutionize industry management and business processes, enhancing the productivity of manufacturing technologies through field data collection and analysis, thus creating real-time digital twins of industrial scenarios. Moreover, it is vital for companies to be as “smart” as possible and to adapt to the varying nature of the digital supply chains. This is possible by leveraging IoT in Industry 4.0 scenarios. In this paper, we describe the renovation process, guided by things2i s.r.l., a cross-disciplinary engineering-economic spin-off company of the University of Parma, which a real manufacturing industry is undergoing over consecutive phases spanning a few years. The first phase concerns the digitalization of the control quality process, specifically related to the company's production lines. The use of paper sheets containing different quality checks has been made smarter through the introduction of a digital, smart, and Web-based application, which is currently supporting operators and quality inspectors working on the supply chain through the use of smart devices. The second phase of the IIoT evolution—currently on-going—concerns both digitalization and optimization of the production planning activity, through an innovative Web-based planning tool. The changes introduced have led to significant advantages and improvement for the manufacturing company, in terms of: (i) impressive cost reduction; (ii) better products quality control; (iii) real-time detection and reaction to supply chain issues; (iv) significant reduction of the time spent in planning activity; and (v) resources employment optimization, thanks to the minimization of unproductive setup times on production lines. These two renovation phases represent a basis for possible future developments, such us the integration of sensor-based data on the operational status of production machines and the currently available warehouse supplies. In conclusion, the Industry 4.0-based on-going digitization process guided by things2i allows to continuously collect heterogeneous Human-to-Things (H2T) data, which can be used to optimize the partner manufacturing company as a whole entity
    corecore